Power Utility Maximization in Constrained Exponential Lévy Models

نویسندگان

  • Marcel Nutz
  • Martin Schweizer
  • Josef Teichmann
چکیده

We study power utility maximization for exponential Lévy models with portfolio constraints, where utility is obtained from consumption and/or terminal wealth. For convex constraints, an explicit solution in terms of the Lévy triplet is constructed under minimal assumptions by solving the Bellman equation. We use a novel transformation of the model to avoid technical conditions. The consequences for q-optimal martingale measures are discussed as well as extensions to non-convex constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk Aversion Asymptotics for Power Utility Maximization

We consider the economic problem of optimal consumption and investment with power utility. We study the optimal strategy as the relative risk aversion tends to in nity or to one. The convergence of the optimal consumption is obtained for general semimartingale models while the convergence of the optimal trading strategy is obtained for continuous models. The limits are related to exponential an...

متن کامل

Risk premiums and certainty equivalents of loss-averse newsvendors of bounded utility

Loss-averse behavior makes the newsvendors avoid the losses more than seeking the probable gains as the losses have more psychological impact on the newsvendor than the gains. In economics and decision theory, the classical newsvendor models treat losses and gains equally likely, by disregarding the expected utility when the newsvendor is loss-averse. Moreover, the use of unbounded utility to m...

متن کامل

Power utility maximization in exponential Lévy models: convergence of discrete-time to continuous-time maximizers

We consider power utility maximization of terminal wealth in a 1-dimensional continuous-time exponential Lévy model with finite time horizon. We discretize the model by restricting portfolio adjustments to an equidistant discrete time grid. Under minimal assumptions we prove convergence of the optimal discrete-time strategies to the continuous-time counterpart. In addition, we provide and compa...

متن کامل

Market Completion and Robust Utility Maximization

In this thesis we study two problems of financial mathematics that are closely related. The first part proposes a method to find prices and hedging strategies for risky claims exposed to a risk factor that is not hedgeable on a financial market. In the second part we calculate the maximal utility and optimal trading strategies on incomplete markets using Backward Stochastic Differential Equatio...

متن کامل

Utility Maximization in Models with Conditionally Independent Increments

We consider the problem of maximizing expected utility from terminal wealth in models with stochastic factors. Using martingale methods and a conditioning argument, we determine the optimal strategy for power utility under the assumption that the increments of the asset price are independent conditionally on the factor process. 1. Introduction. A classical problem in Mathematical Finance is to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010